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On space-times admitting a three-parameter isometry group 
with two-dimensional null orbits 

Alan Barnes 
Department of Mathematics, University of Aston in Birmingham, Gosta Green, 
Birmingham B4 7ET, UK 

Received 6 September 1978 

Abstract. Space-times admitting a three-parameter group of motions acting on two- 
dimensional null orbits are considered. A coordinate transformation relating the canonical 
form of the metrics as given by Petrov and the apparently more general form given by 
Defrise is exhibited. For pure radiation fields the space-time is a PP wave. The general 
vacuum solution with a cosmological constant is found in closed form. 

1. The metric 

In his book, Petrov (1969) listed the canonical forms of the metrics of space-times 
admitting isometry groups. Amongst these he gave the metric admitting a three- 
parameter group of motions of Bianchi type 2 acting on two-dimensional null orbits. 
More recently, Defrise (1969) and Goenner and Stachel (1970) have suggested that 
Petrov's metric is not sufficiently general and proposed a canonical form involving an 
additional arbitrary function of one variable. 

The two forms of the metric are, however, equivalent and the additional function 
may be eliminated by means of a coordinate transformation. To demonstrate this I take 
as a starting point the Killing vectors given by Defrise (1969): 

xo = a/axo X ,  = B , ( x ~ ) x ' ( ~ / ~ x " )  +Au(x3)(a/dx') (1) 

where a = 1, 2 and A x B = 1. Here and below it is convenient to use two-dimensional 
vector notation, i.e. A = (A1,  A 2 ) ,  etc. 

From Killing's equations one can deduce that the most general metric admitting the 
three Killing vectors of equation (1) is 

ds2 = a2(x2 ,  x3){-2 dxodx3+A(x3)(dx')2+2p(x3)x' dx' dx3 

+ [ U ( X ~ ) ( X ' ) ~  + 2.5(x2, x3)](dx3)*} 

+p2(x2,  x ~ ) ( ~ x ~ ) ~ +  2y(x2, x3) dx2 dx3 

where 

A (x3) = (A x A)-' p(x3) = A ( B  X A )  a ( x 3 ) = ( B - p A ) X B  (3 1 
and a, p, y and E are arbitrary functions of x2  and x3. A prime and a dot denote 
differentiation with respect to x 2  and x3 respectively. 

030.5-4470/79/091493 + OS$Ol.OO @ 1979 The Institute of Physics 1493 



1494 A Barnes 

Not all the functions appearing in the metric are essential and may be eliminated by 
means of coordinate transformations preserving the form of the Killing vectors in (1). 
The metric given by Petrov is obtained by setting U = p = A - 1 = E = y = 0 in ( 2 ) .  From 
( 3 )  it follows that A = B and B = 0 and the basis of the Lie algebra can be chosen so that 
the Killing vectors take the form given by Petrov: 

xo = a / a x o  x1 = a / a x l  x2 = ~ ' ( a / a ~ ~ ) + ~ ~ ( a / a ~ ' ) .  (4) 

Defrise's form of the metric is obtained by setting p = A  - 1 = y = 0 and the 
components of the Killing vectors satisfy the equations A = B and B = uA. Goenner 
and Stachel give the same Killing vectors as Defrise but the metric function E is set equal 
to zero in addition to p, A - 1 and y .  

A somewhat tedious calculation reveals that the most general coordinate trans- 
formation preserving the form of (1) is 

z o = x o +  f ( x 3 ) ( X 1 ) 2 + g ( X 2 ,  x 3 )  (Sa) 

2' = h ( x 3 ) x 1  

z2 = k ( x 2 ,  x 3 )  
f 3 = l ( x  3 ) 

where f ,  g, h ,  k and 1 are arbitrary functions of their arguments subject only to the 
restrictions that i, k' and h are all non-zero. Under these transformations the Killing 
vectors and metric change as follows: 

A = h A  ( 6 a )  
B = ( B + 2 f A ) / h  
;2 = a 2 / i  
h'= A i / h 2  

If I ,  h and f are chosen to satisfy the ordinary differential equations 

i = h 2 / A  h = h ( p  + 2 f ) / A  2 f = ( p + 2 f ) ' / A  - U  (7) 
* 

thenA = 1  andp '=G=O.  
The additional function u ( x 3 )  in Defrise's metric has been eliminated. By a suitable 

choice of the functions g and k the metric components E and q may be set to zero. To 
see this, following Petrov (1969) we put E = 7 = 0 in ( 6 h ,  i )  and obtain partial differen- 
tial equations of Cauchy-Kowalewski type for k and g. Thus the equivalence of the two 
canonical forms has been demonstrated. 

The functions I ,  h and f are not completely determined by (7). However, the 
remaining freedom cannot be used to simplify the metric but merely reflects the 
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freedom of choice in the basis of a Bianchi type-2 algebra. Given any constants a, b and 
c such that bc # 0 the coordinate x 1  may be chosen so that axo + bX1 + CXZ = a/ax'. 

As indicated above, g and k may be chosen so that i = 7 =,O. However, it will be 
more convenient below to choose these two functions so that p = 1 and 7 = 0. This is 
achieved if k and g satisfy the equations 

k ' = P  a 2 g ' = 2 y - p k .  (8) 

2. Pure radiation fields 

I will henceforth use the following metric form which was derived in the previous 
section: 

ds2 = a 2 ( x 2 ,  x3){-2 d x o d x 3 + ( d x 1 ) 2 + 2 ~ ( ~ 2 ,  x ~ ) ( ~ x ~ ) ~ } + ( ~ x ~ ) ~ .  (9) 

It will be convenient at this point to introduce a pseudo-orthonormal tetrad of 
one-forms and a two-form whose components are given by 

2 3  2 x o j  = 1, = a  si e, = asf e, = S i  

nj = -a j  + e a i  
(10) 

1 2 
- 

wii = J21ci{eil+ iejl). 

The Ricci tensor and complex self-dual Weyl tensor of the metric (9) can then be 

0 3  

1 2  

conveniently written as 

R', = a-'(aaf'+ 2 a 9 { 2 1 , ~ n ~ ,  + fip} + 3a-'a"e.e. + 4 ~ ~ ( a c i [  - c i a ' ) ~ q ) +  CU, (1 l a )  

C ; k l  = Dwijwkl (1 lb )  

C=c~-~(acY - 2 c i ' ) + ( ~ - ~ ( a ~ " + 3 a ' ~ ' )  (1 l c )  

D = a - 6 ( a ~  -2ci22)-a-3(a€"+a'E'). ( 1 1 4  

Clearly I' is both a Ricci eigenvector and the principal null vector of the Weyl tensor. 
The Weyl tensor is type N or zero: a fact which could have been foreseen as the isotropy 
group of the space-time contains the null rotations about 1' (Ehlers and Kundt 1962). 

The following theorem which generalises that of the author (Barnes 1973) will now 
be proved. 

2I2 '  

where 

Theorem. A space-time which admits a three-parameter group of motions acting 
multiply transitively on two-dimensional null orbits and which is a pure radiation field is 
a plane-fronted wave with parallel rays (PP wave). Further, if the space-time is a 
vacuum or an invariant Einstein-Maxwell field, it is a plane-wave space-time. 

Proof. For pure radiation, Ra6 = Ek,kb for some scalar E and some null vector k,. This 
is compatible with (1 l a )  if and only if k ,  is proportional to I ,  and a' = 0. It may readily 
be verified that the latter condition implies that both l i  and w,, are covariantly constant. 
It follows immediately from a result of Ehlers and Kundt (1962) that the field is a PP 
wave. As D is real, it also follows that the polarisation of the gravitational wave is a 
constant (equal to 0 or T). 
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By definition the wave is plane if and only if its amplitude D is constant in the 
wavefronts (i.e. D = D(x3) ) .  This is equivalent to the condition C = C(x3)  as, if a’ = 0, 
C and -D differ only by a function of x3. For a vacuum field C = 0 and so the second 
part of the theorem follows trivially. 

A source-free Einstein-Maxwell field is necessarily null with 1’ as its principal null 
vector since, otherwise, the Ricci tensor would be incompatible with ( l l a ) .  Hence the 
Maxwell bivector can be written in the form 

F,, = 2Flcipl+ 2Gll,$l (12) 

where C = F2 + G2. From Maxwell’s equations it follows that 

F + i G  = H [ x 3 ]  e x p [ J ( x 3 ) ( x 2 + i a ( x 3 ) x ’ ) + i 4 ( x 3 ) ]  (13) 

where H, J and 4 are arbitrary functions of integration. If the Maxwell bivector is 
invariant under the action of the isometry group then LxmFji = 0, where the X,’s are 
given by (4). It follows that E,.’ = 0 and consequently J ( x 3 )  = 0. Thus C = H 2 ( x 3 )  and 
D are functions of x3  alone and both the electromagnetic and gravitational fields are 
plane waves. 

A t  this stage it is worth completing the solution for a general Einstein-Maxwell field 
as it has the somewhat unusual feature that the gravitational field is invariant under the 
action of the isometry group whereas its source F,i given by (12) and (13) is not invariant 
unless J = 0. The field equations are 

Rij = H2(x3)  exp(2J(x3)x2)1,1j (14) 

where Rtj is given by (1 la, c).  If J # 0, the general solution is 

where a, H and J are arbitrary functions of x3. The two functions of integration 
appearing in E have been removed by means of the coordinate transformation 

- 3  3 x = x  X’O = xo + a -2k(x3)x2  + L(x3) x“ = x’2 = x2  + K(x3) 

(16) 

where K and L are suitably chosen functions of x3. 

3. Vacuum fields with a cosmological constant 

In this section the general solution is found for which the Ricci tensor is given by 
R,, = Kgti where K is the cosmological constant. From (1 la,  c )  it follows that 

a = ao(x3)exp(cx2) E ” + ~ c E ’ =  a 0 4 ( 2 & i  -(yobo) exp(-2cx2) (17) 

where a0 is an arbitrary function of x3 and 3c2 = K. Integrating the latter equation one 
obtains 

exp(-3cx2) + ( 2 ~ ~ a 4 0 ) - ~ ( a ~ & ~ - 2 & ; )  exp(-2cx2) (18) E = y 0 ( x 3 ) +  

where eo and yo are arbitrary functions of integration. 
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The coordinate freedom preserving the form of the metric (9) includes the trans- 
formation 

where h and k are constants. Under this transformation 

E = E + [ ( 2 c a ~ ) ~ ' ~ ?  - (2a ; ) -1 r i2 -a i3 r i~0]  e x p [ 2 c ( ~  - x ' ~ ) ] - L .  

E = eO(x ) exp(-3cx ) 

By a suitable choice of K and L one may put (omitting tildes) 

(20) 

The constants h and k in (19) may be chosen so that, without loss of generality, 

Thus the general vacuum solution with cosmological constant is given by the metric 

(21) 

This field is not a PP wave as cy'  f 0. However, the null vector I '  is hypersurface 
orthogonal, shear- and divergence-free and geodesic and hence the field is a plane- 
fronted wave (Ehlers and Kundt 1962). 

3 2 2 
Cud.'" - 24" = 0. 

cy0 = (x3)-'. 

(9) with 
3 

cy = exp(cx2)/x3 E = E ~ ( X  ) exp(-3cx2). 
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